1,435 research outputs found

    Loop quantum effect and the fate of tachyon field collapse

    Get PDF
    We study the fate of gravitational collapse of a tachyon field matter. In presence of an inverse square potential a black hole forms. Loop quantum corrections lead to the avoidance of classical singularities, which is followed by an outward flux of energy.Comment: Contribution to the conference of Loops'11, Madri

    Elastic fibers: The missing key to improve engineering concepts for reconstruction of the Nucleus Pulposus in the intervertebral disc.

    Full text link
    The increasing prevalence of low back pain has imposed a heavy economic burden on global healthcare systems. Intense research activities have been performed for the regeneration of the Nucleus Pulposus (NP) of the IVD; however, tissue-engineered scaffolds have failed to capture the multi-scale structural hierarchy of the native tissue. The current study revealed for the first time, that elastic fibers form a network across the NP consisting of straight and thick parallel fibers that were interconnected by wavy fine fibers and strands. Both straight fibers and twisted strands were regularly merged or branched to form a fine elastic network across the NP. As a key structural feature, ultrathin (53 ± 7 nm), thin (215 ± 20 nm), and thick (890 ± 12 nm) elastic fibers were observed in the NP. While our quantitative analysis for measurement of the thickness of elastic fibers revealed no significant differences (p < 0.633), the preferential orientation of fibers was found to be significantly different (p < 0.001) across the NP. The distribution of orientation for the elastic fibers in the NP represented one major organized angle of orientation except for the central NP. We found that the distribution of elastic fibers in the central NP was different from those located in the peripheral regions representing two symmetrically organized major peaks (±45⁰). No significant differences in the maximum fiber count at the major angles of orientation (±45⁰) were observed for both peripheral (p = 0.427) and central NP (p = 0.788). Based on these new findings a structural model for the elastic fibers in the NP was proposed. The geometrical presentation, along with the distribution of elastic fibers orientation, resulting from the present study identifies the ultrastructural organization of elastic fibers in the NP important towards understanding their mechanical role which is still under investigation. Given the results of this new geometrical analysis, more-accurate multiscale finite element models can now be developed, which will provide new insights into the mechanobiology of the IVD. In addition, the results of this study can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and IVD models to truly capture the multi-scale structural hierarchy of IVDs. STATEMENT OF SIGNIFICANCE: Visualization of elastic fibers in the nucleus of the intervertebral disk under high magnification was not reported before. The present research utilized extracellular matrix partial digestion to address significant gaps in understanding of nucleus microstructure that can potentially be used for the fabrication of bio-inspired tissue-engineered scaffolds and disk models to truly capture the multi-scale structural hierarchy of discs

    Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus.

    Full text link
    Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed

    Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications.

    Full text link
    Although poly vinyl alcohol-poly acrylic acid (PVA-PAA) composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035) and its water vapour permeability significantly decreased (p = 0.04). Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04). The mechanical properties-including ultimate tensile strength, modulus, and elongation at break-remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016). A higher release rate for tetracycline was found at pH = 8 compared to neutral pH

    Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device.

    Full text link
    In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications

    Novel Bacterial Cellulose-Poly (Acrylic Acid) Hybrid Hydrogels with Controllable Antimicrobial Ability as Dressings for Chronic Wounds.

    Full text link
    This investigation examines the combination of poly (acrylic acid) (PAA) and bacterial cellulose (BC) nanofibers to synthesize hydrogel hybrid composites used for wound dressing application. Amoxicillin (AM) was also grafted onto the composites for drug release. Fourier transform infrared analysis and scanning electron microscopy conducted revealed the structure and porosity of the composite being developed, as well as the successful fabrication of BC-PAA composites. The results of mechanical testing and hygroscopicity revealed that the composite shows higher stability than hydrogels which are currently used worldwide, albeit with a slight reduction in swelling capabilities. However, the composite was revealed to be responsive to a rise in pH values with an increase in composite swelling and drug release. These results together with their morphological characteristics suggest that BC-PAA hydrogel hybrid composite is a promising candidate for wound dressing application

    Vasopressin attenuates ischemia-reperfusion injury via reduction of oxidative stress and inhibition of mitochondrial permeability transition pore opening in rat hearts

    Get PDF
    Aim of this study was to investigate the involvement of the mitochondrial permeability transition pore (MPTP) and oxidative stress in the cardioprotective effect of vasopressin (AVP) on ischemia/reperfusion (I/R) injury. Anesthetized male wistar rats were subjected to regional 30 min ischemia and 120 min reperfusion and randomly divided into nine groups: (1) Control; saline was administered intravenously before ischemia, (2) vasopressin was administrated 10 min prior to ischemia, (3, 4) Atractyloside as MPTP opener, was injected 5 min prior to reperfusion without and with vasopressin, (5, 6) Cyclosporine A as a MPTP closer, was injected 5 min prior to reperfusion without and with vasopressin, (7) mitochondria were isolated from control group and CaCl2 was added as MPTP opener and swelling inducer, (8) isolated mitochondria from Control hearts was incubated with Cyclosporine A before adding the CaCl2 (9) CaCl2 was added to isolated mitochondria from vasopressin group. Infusion of vasopressin decreased infarct size (18.6±1.7% vs. control group 37.6±2.4%), biochemical parameters [LDH (Lactate Dehydrogenase), CK-MB (Creatine Kinase-MB) and MDA (Malondialdehyde) plasma levels, PAB (Prooxidant-antioxidant balance)] compared to control group. Atactyloside suppressed the cardioprotective effect of vasopressin (32.5±1.9% vs. 18.6±1.7%) but administration of the Cyclosporine A without and with vasopressin significantly reduced infarct size to 17.7±4% (P<0.001) and 22.7±3% (P<0.01) respectively, vs. 37.6±2.4% in control group. Also, vasopressin, similar to Cyclosporine A, led to decrease in CaCl2-induced swelling. It seems that vasopressin through antioxidant effect and MPTP inhibition has created a cardioprotection against ischemia/reperfusion injuries. © 2015 Elsevier B.V. All rights reserved

    Correspondence between entangled states and entangled bases under local transformations

    Full text link
    We investigate whether pure entangled states can be associated to a measurement basis in which all vectors are local unitary transformations of the original state. We prove that for bipartite states with a local dimension that is either 2,42, 4 or 88, every state corresponds to a basis. Via numerics we strongly evidence the same conclusion also for two qutrits and three qubits. However, for some states of four qubits we are unable to find a basis, leading us to conjecture that not all quantum states admit a corresponding measurement. Furthermore, we investigate whether there can exist a set of local unitaries that transform \textit{any} state into a basis. While we show that such a state-independent construction cannot exist for general quantum states, we prove that it does exist for real-valued nn-qubit states if and only if n=2,3n=2,3, and that such constructions are impossible for any multipartite system of an odd local dimension. Our results suggest a rich relationship between entangled states and iso-entangled measurements with a strong dependence on both particle numbers and dimension
    corecore